Untitled Document
Not a member yet? Register for full benefits!

Username
Password
 Salk scientists reveal circuitry of fundamental motor circuit

This story is from the category The Brain
Printer Friendly Version
Email to a Friend (currently Down)

 

 

Date posted: 06/05/2014

cientists at the Salk Institute have discovered the developmental source for a key type of neuron that allows animals to walk, a finding that could help pave the way for new therapies for spinal cord injuries or other motor impairments. Plus the more we understand about these specific types of neuron, the easier it is to interface prosthetic technologies with them.

The spinal cord contains a network of neurons that are able to operate largely in an autonomous manner, thus allowing animals to carry out simple rhythmic walking movements with minimal attentionógiving us the ability, for example, to walk while talking on the phone. These circuits control properties such as stepping with each foot or pacing the tempo of walking or running.

The researchers, led by Salk professor Martyn Goulding, identified for the first time which neurons in the spinal cord were responsible for controlling a key output of this locomotion circuit, namely the ability to synchronously activate and deactivate opposing muscles to create a smooth bending motion (dubbed flexor-extensor alternation). The findings were published April 2 in Neuron.

Motor circuits in the spinal cord are assembled from six major types of interneuronsócells that interface between nerves descending from the brain and nerves that activate or inhibit muscles. Goulding and his team had previously implicated one class of interneuron, the V1 interneurons, as being a likely key component of the flexor-extensor circuitry. However when V1 interneurons were removed, the team saw that flexor-extensor activity was still intact, leading them to suspect another type of cell was also involved in coordinating this aspect of movement.

To determine what other interneurons were at play in the flexor-extensor circuit, the team looked for other cells in the spinal cord with properties that were similar to those of the V1 neurons. In doing this they began to focus on another class of neuron, whose function was not known, V2b interneurons. Using a specialized experimental setup that allows one to monitor locomotion in the spinal cord itself, the team saw a synchronous pattern of flexor and extensor activity when V2b interneurons were inactivated along with the V1 interneurons.

The team also showed that this synchronicity led to newborn mice displaying a tetanus-like reaction when the two types of interneurons were inactivated: the limbs froze in one position because they no longer had the push-pull balance of excitation and inhibition that is needed to move.

These findings further confirm the hypothesis put forward over 120 years ago by the Nobel Prize-winning neuroscientist, Charles Sherrington, that flexor-extensor alternation is essential for locomotion in all animals that have limbs. He proposed that specialized cells in the spinal cord called switching cells performed this function. After 120 years, Goulding and researchers have now uncovered the identity of these switching cells.

See the full Story via external site: www.salk.edu



Most recent stories in this category (The Brain):

04/02/2017: HKU scientists utilise innovative neuroimaging approach to unravel complex brain networks

26/01/2017: Personality linked to 'differences in brain structure'

12/01/2017: Donkey Kong used to Help Guide New Approaches in Neuroscience

10/12/2016: Doctors use deep-brain ultrasound therapy to treat tremors

17/02/2015: Hearing experts break sound barrier for children born without hearing nerve

17/02/2015: Smoking thins vital part of brain

05/02/2015: Intracranial Stimulation Proved Efficient in the Recovery of Learning and Memory in Rats

05/02/2015: Repeated head blows linked to smaller brain volume and slower processing speeds