Deprecated: mysql_connect(): The mysql extension is deprecated and will be removed in the future: use mysqli or PDO instead in /home/virtualw/public_html/Archive/IndividualNews.php on line 12
VWN News: New method improves accuracy of imaging systems
Untitled Document
Not a member yet? Register for full benefits!

Username
Password
 New method improves accuracy of imaging systems

This story is from the category Display Technology
Printer Friendly Version
Email to a Friend (currently Down)

 

 

Date posted: 08/02/2017

New research provides scientists looking at single molecules or into deep space a more accurate way to analyze imaging data captured by microscopes, telescopes and other devices.

The improved method for determining the position of objects captured by imaging systems is the result of new research by scientists at the University of Chicago. The findings, published Dec. 26 in Proceedings of the National Academy of Sciences, provides a mechanism—known as single-pixel interior filling function, or SPIFF—to detect and correct systematic errors in data and image analysis used in many areas of science and engineering.

“Anyone working with imaging data on tiny objects—or objects that appear tiny—who wants to determine and track their positions in time and space will benefit from the single-pixel interior filling function method,” said co-principal investigator Norbert Scherer, a UChicago chemistry professor.

Researchers across the sciences use imaging to learn about objects on scales ranging from the very small, such as nanometers, to the very large, such as astrophysical scales. Their work often includes tracking the movement of such objects to learn about their behavior and properties.

Many imaging systems and image-based detectors are constituted of pixels, such as with a mega-pixel cell phone. So-called particle tracking allows researchers to determine the position of an object down to a single pixel and even explore sub-pixel localization to better than one-tenth of a pixel accuracy. With an optical microscope’s resolution of about 250 nanometers and an effective pixel size of about 80 nanometers, particle tracking allows researchers to locate the center or location of an object to within a few nanometers, provided enough photons are measured.

But such sub-pixel resolution depends on algorithms to estimate the position of objects and their trajectories. Using such algorithms often results in errors of precision and accuracy due to factors such as nearby or overlapping objects in the image and background noise.

SPIFF can correct the errors with little added computational costs, according to Scherer. “Until this work, there were no simple ways to determine if the tracking and sub-pixel localization was accurate and to correct the error if it was not,” he said.

See the full Story via external site: news.uchicago.edu



Most recent stories in this category (Display Technology):

08/02/2017: New method improves accuracy of imaging systems

04/02/2017: New technology to watch the sea waves in 3D

11/01/2017: Telepresence used for Criminal Court Proceedings

16/09/2014: Squid skin metamaterials project yields vivid color display

10/09/2014: 2D or 3D? New study shows no difference in emotional reactions between film formats

28/08/2014: Razor-sharp TV pictures

07/06/2014: Shatterproof screens that save smartphones

27/05/2014: New 'T-ray' tech converts light to sound for weapons detection, medical imaging