|
This story is from the category Embodiment
Date posted: 12/03/2012 University of Rhode Island marine biologist Jacqueline Webb gets an occasional strange look when she brings fish to the Orthopedics Research Lab at Rhode Island Hospital. While the facility's microCT scanner is typically used to study bone density and diseases like osteoporosis, it is also providing new insights into the skull structure and sensory systems of fish. A professor of biological sciences and director of the marine biology program at URI, Webb studies the lateral line system, a sensory system in all fishes that enables them to detect water flows and vibrations in the water generated by predators and prey. The system is contained in a series of tubular canals in the skull and on the body. When flows and vibrations in the environment cause water to move in the canals, the cilia on the sensory organs inside the canals send a signal to the fish's brain. "If some fish are able to use nonvisual sensory capabilities such as the lateral line to detect prey without seeing, perhaps that makes them more successful," said Webb. "Fish with specialized widened lateral line canals on the head are probably in a position to do well in more turbid waters and under lower light conditions where visually-oriented fishes might be at a disadvantage." See the full Story via external site: www.sciencedaily.com Most recent stories in this category (Embodiment): 28/02/2017: UK robotics research gets £17.3m pledge |
|